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A domain decomposition method has been developed for generating 
orthogonal polynomials for a Gaussian weight on (- 1, 1). The method 
takes advantage of the underlying asymptotic structure of the 
orthogonal polynomials and, hence, it is effective in the sense 
that it makes maximal use of the analytic properties of the solution to 
increase accuracy and efficiency. These polynomials are necessary for 
constructing Gaussian quadrature formulas that are encountered in 
large quantum chemistry computational packages and in calculating 
the Compton scattering kernel and its associated angular moments. 
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I. INTRODUCTION 

This paper is concerned with the construction of 
Gaussian quadrature given a positive weight function or a 
measure on a finite interval. There are two steps in such a 
construction: first, the associated orthogonal polynomials 
must be generated; and, second, the Gaussian quadrature 
weights and abscissas are calculated as an eigenvalue 
problem associated with the coefficient matrix corre- 
sponding to the three-term recurrence satisfied by the 
orthogonal polynomials. The second step is the less difficult 
of the two because the Francis QR algorithm is an effective 
tool. On the other hand, the problem of generating 
orthogonal polynomials given just a weight is fraught with 
numerical difficulties. 

In theory, the procedure of Stieltjes consists of applying 
the Gram-Schmidt orthogonalization process to a subspace 
of polynomials. The sequence of orthogonal polynomials 
then satisfies a three-term recurrence whose coefficients are 
just the ratios of the weighted norms of successive polyno- 
mials and the weighted centroid of the polynomials. 

In practice, the calculations involve integrating a 2n th- 
degree polynomial for each n th-order coefficient. This pro- 
cess is extremely delicate as is the solution of the three-term 
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recurrence. Thus, numerical stability is a well-documented 
concern [ 11. A relatively effective algorithm for generating 
the recurrence coefficients is the “modified moments” 
method. Basically, the “modified moments” method makes 
use of a known and suitable system of polynomials that is 
“close” in some sense to the desired polynomials to pre- 
condition the calculation. This process has two steps; one 
step involves changing of bases between polynomials sub- 
spaces and the other step is concerned with preconditioning 
the computation. The role played by changing bases is to 
develop a relation between the coefficients of the respective 
recurrences and the matrix elements of the linear map. 
The matrix elements are obtainable from the “modified 
moments” and, thus, enabling the computation of the 
desired recurrence coefficients in terms of known quantities. 
The role of preconditioning is to enhance numerical 
stability. As we shall see later, the “modified moments” can 
be interpreted as the “Fourier” coefficients of the ratio of the 
actual weight to that of the weight of the preconditioning 
orthogonal polynomial subspace to which the projection is 
performed. So far, only the classical orthogonal polyno- 
mials have been used as preconditioners, since they are well 
known otherwise we face the problem of generating 
orthogonal polynomials, which is the topic of this paper. 
Just what constitutes an effective preconditioner is an open 
question. 

For the present case of a Gaussian or a Hermite weight 
function, integrals involving the weight 

s l f(x) exp( -b*x*) dx 
-1 

are commonly encountered in quantum chemistry calcula- 
tions. They are integral parts of large quantum chemistry 
packages such as the GAUSSIANXX series [2], the 
COLUMBUS MRCI Program System [3], HONDO [4], 
etc. A relatively large portion of the computation resides in 
the evaluation of these integrals. As a compromise to 
efficiency and storage, the developers of these packages 
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store the quadrature weights and abscissas in memory. A 
fast algorithm for generating the Gaussian quadrature for- 
mulae, if it exists, will undoubtedly alleviate such storage 
requirements and, thus, free the user to pursue other 
pressing tasks requiring larger blocks of storage. Another 
application of the quadrature formulas is in computing a 
Compton scattering kernel and its associated angular 
moments [S]. Compton scattering from relativistic elec- 
trons plays a primary role in the theory of radiative trans- 
port. 

In a recent survey, Gautschi [6] lists Piessens and 
Branders [7] and King and Dupuis [B] as the main con- 
tributors to the computation of the Gaussian quadrature 
rule for the Gaussian weight on the interval (- 1, 1). 
Piessens and Branders use the “modified moments” method 
with the Chebyshev polynomials of the first kind as the 
preconditioner. They calculated the Gaussian quadrature 
rule for only a limited range of values of b and n, the order 
of the polynomial. In constrast, King and Dupuis are only 
interested in a restricted set of parameters, n < 10 and 
any b. They also give an analysis of the local behaviors of 
the constructed polynomials, called Rys polynomials in a 
tribute to a colleague. King and Dupuis note in particular 
that as b increases the Rys polynomials approach the 
behavior of the scaled Hermite polynomials for II d N, 
where “N is such that b2 is roughly larger than three times 
the largest zero of a 2N Hermite polynomial.” This is a 
significant observation, namely, that the Rys polynomials 
can acquire certain behaviors in the parameter space of b 
and n. 

The object of this paper is to take advantage of King and 
Dupuis’ observation to develop an effective algorithm for 
generating Rys polynomials for all n and b using a domain 
decomposition method. It is effective in the sense that the 
algorithm makes maximal use of the analytic properties of 
the solution to increase efficiency and accuracy. This is also 
true of domain decomposition methods in solving partial 
differential equations with many and differing local sub- 
structures. In this paper, we will identify other sub-regions 
of the changing solution structure by employing techniques 
of asymptotic analysis. This is done by comparing the scale 
of variation of the Gaussian weight, b, and that of the scales 
inherent in the oscillation of the polynomials. Another 
objective is to investigate the effectiveness of various 
preconditioners in the “modified moments” method in light 
of these identifiable and distinguished local structures. 

These inherent distinguished local behaviors match well 
with the basic tenets of the domain decomposition methods 
[9-l 1 ] and, therefore, can be fully and fruitfully exploited. 
The essence of this class of methods is the patching of 
differing local sub-domain solutions to form a global solu- 
tion. Another laudable feature of the domain decomposition 
methods is that in each subdomain we may use an entirely 
different solution technique. This allows for increased 

efficiency and accuracy. These are the reasons underlying 
their popularity in treating problems with many and 
differing local structures, i.e., multiple scales problems. It is 
reasonable to expect that domain decomposition methods 
are suitable for generating orthogonal polynomials given 
any positive weight. 

The organization of the paper is as follows. Section II 
defines the problem of generating orthogonal polynomials 
given just the weight. Section III reviews the “modified 
moments” method. Both Sections II and III are included for 
completeness and for the presentation to be self-contained. 
Section IV is concerned with considerations leading to the 
development of a domain decomposition method. Section V 
gives the algorithm. Section VI closes with results of the 
computation and discussions on effectiveness of the pre- 
conditioning polynomial subspaces. 

II. GENERATION OF ORTHOGONAL 
POLYNOMIALS 

This section reviews briefly the problem of generating 
orthogonal polynomials given a positive weight on a finite 
interval. The subsequent calculation of the Gaussian 
quadrature rule will also be discussed. There is no new 
information reported. 

The procedure of Stieltjes for generating orthogonal poly- 
nomials given a positive weight, w(x) on a finite interval 
(x0, x, ) may be stated as follows. Let { 17,) be a set of manic 
orthogonal polynomials defined on the interval (x,, x1). 
Then they satisfy a three-term recurrence relation given by 

with 

n,+,(X)=(X--C(,)n,(x)-B,n,-,(X) (1) 

Ii-,(x)=0 and n,(x) = 1. (2) 

Orthogonality imposes, as in the Gram-Schmidt process, a 
relation between the coefficients tl, and /I, and the integrals 
of the polynomials: 

x’ yn = s n:(x) 4x1 dx, n = 0, 1, 2, . . . (3) 
x0 

I 
x1 

cI,=y,’ xZ7f(x) w(x) dx, n=o, 1,2, . . . (4) 
x0 

and 

Pn=Yn/Y”-13 n = 1, 2, .___ (5) 

Note that y, is just the weighted norm of 17,(x); and ~1, and 
/?,, are respectively the weighted centroid of the polynomial 
and the ratio of successive weighted norms. Simply stated, 
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the problem of generating orthogonal polynomials given a 
weight, w(x) on (x0, xi) is to compute the recurrence coef- 
ficients, ~1, and 8,. We remark that the integrands of (3)-(4) 
are essentially polynomials of degree 2n and 2n + 1 and, 
therefore, their numerical integration can be delicate 
especially for large n. 

The computational process of the Stieltjes procedure 
begins with (2) (3), and (4) yielding y0 and a,,. Next, sub- 
stituting (2) into (1) gives n,(x). Continuing in this man- 
ner, we can generate as many polynomials as desired. We 
remark that this is a forward marching process. It is well 
known that calculating three-term recurrence by forward 
marching can be troublesome due to numerical stability. 
Coupling this with the delicacy of the numerical integration, 
it is not unexpected that the computation is extremely 
ill-conditioned. 

Having thus obtained the recurrence coefficients, c1,, 
n = 0, 1, . . . . k, and fi,,, n = 1, . . . . k, we can form a symmetric, 
k x k, tridiagonal recurrence coefficient matrix: 

then 

Q-l(x)=0 and Qdx) = 1, 

and 

R,+,(x)=Cx2-(P2n+l+82n+2)l 

xRAx)-BznBzn+ 1% l(x), 

with 

R-,(x)=0 and R,(x) = 1. 

Substituting (8a), (8b) into (3) we obtain 

The eigenvalues of the above Jacobi matrix are the abscissas 
of the Gaussian quadrature rule, since this is equivalent to 
finding the zeroes of the kth polynomial, n,(x) = 0. The 
corresponding Gaussian quadrature weights are related to 
the first component of the corresponding normalized eigen- 
vectors. This computation can be accomplished effectively 
using Francis’ Q R algorithm [ 12 1. 

For a symmetric weight function, w( -x) = w(x) on a 
symmetric interval about the origin, (- 1, 1) as in the pre- 
sent case, the system of orthogonal polynomials simplifies 
to two sub-systems with even and odd parity. An immediate 
consequence is that 

~1, = 0, Vn, 

and (1) becomes 

17,+l(x)=x~,(x)-B,~,~,(x). (7) 

The odd and even parity sub-spaces satisfy a three-term 
recurrence similar to (1): Let 

n2,(x) = Q,(x) and 17,, + ,(x) = x&(x); (8) 

y2n = j; Q;(x’) w(x’) d(x2) 
v@ 

Y 7X+1= j’ R;(x2) w(x2) ,,‘? d(x2). 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Thus, we see from (13) and (14) that Q,(x’) and R,(x*) are 
respectively systems of half-range polynomials orthogonal 
with respect to the weights w(x2)/,/‘? and w(x’) ,,@ in the 
interval 0 < q d 1, in which we may replace x2 by q. 

III. THE “MODIFIED MOMENTS” METHOD 

III. 1. Theoretical Basis 

The “modified moment” or the modified Chebyshev’s 
method is a relatively stable method for generating 
orthogonal polynomial on a finite interval. Although the 
derivation of the “modified moments” method can be found 
elsewhere, it is included for the sake of completeness and for 
making connection with the analysis leading to the develop- 
ment of the domain decomposition method. As we shall see, 
the basis of the method is concerned with preconditioning 
and with changing bases. The main idea is to precondition 
the calculation with a known orthogonal polynomial sub- 
space of equal dimension. Stabilization is obtained if the 
preconditioned polynomial subspace is “close” in some 
sense to the actual orthogonal polynomial subspace. The 
two steps of the procedure, namely, changing basis and 
preconditioning the calculation are totally independent. 

%1/99/Z-IO 
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The process of changing bases is given by a linear trans- 
formation T 

between two orthogonal polynomial subspaces 9, and P&,, 
of which PG is presumed known. The orthogonal polyno- 
mial subspace PW is the set of manic polynomials orthogonal 
on the interval (x,, x1) with respect to the weight w and is 
defined by ( 1 )-( 5). 

The orthogonal polynomial subspace 9, is a known set of 
polynomials, not necessarily manic, orthogonal on an 
equivalent finite interval with respect to the weight 6, and is 
defined by the recurrence 

with 

F,(x)=0 and P,(x) = 1. 

Here, the coefficients a,,, b,, and c, are presumed known. 
From the definitions of the polynomial subspaces, it is 

clear that the linear transformation is finite dimensional and 
the associated Nx N matrix is lower triangular. Let the 
elements of the transformation matrix T be tk.[, and 

a-4 = i tn,,~r(x)> n = 0, 1, . ..) N- 1; (15) 
I=0 

then, the matrtx elements t,,, may be computed recursively 
as 

t - 1. o,o- 9 

t1.o = taoa, + 6,) to,,, 
(16) 

t,,, = sot,,,; 

for n 2 2; 

t. =a,-,t,- I,n-17 (17) 

t . ..11’=(a.~1a,-I+b.,-,)t,-,;.-, 

+an-ltn~l,n-2~ (18) 

t n,m =a,-~t,-l,,-l 

+(a,-,a,+b,-,)t,-,,, 

+a”-,am+ltn~1,m+l-Cn--ltn-2,m, (19) 

with m = 1, . . . . n - 2 and 

t ,,,~=(a,-,ao+b,-,I tel.0 

+a,-,Blt,-,,,-c,-lt,~,,o. (20) 

Note that (16~(20) involve both sets of recurrence coef- 

ficients, {a,, a, } and {a,, , b,, c, }, as well as the matrix 
elements tk,, for 1 < I < n and k -c n. 

The “modified moments” or the modified Chebyshev’s 
method is related to the above change of bases algorithm 
through the introduction of the “mixed moments”: 

0 n,m = I 

b 

n,(x) k,(x) 4x1 dx, 
a 

n, m = 0, 1, 2, . . . . N- 1. (21) 

The meaning of the “mixed moments” matrix element gn,m 
will become evident as we substitute (15) into (21) to yield 

rs n,m = I x’ 4x1 dx n,(x) 2 t,,,~,(x) 
-ul I=0 

= ,go tm,, i‘:,’ 4x1 dx n,(x) n,(x). 

By virtue of orthogonality among the polynomials, P,(x) 
on (x0, x,), we have 

= Yntm,“. (22) 

Hence, we see that the “modified moments” method is 
intimately related to changing bases between polynomial 
subspaces. 

The “modified moments” algorithm is the result of sub- 
stituting (22) into (16)-(20) thus allowing the coefficients, 
a,, n =o, 1, . ..) N- 1, and fin, n = 1, 2, . . . . N- 1, to be com- 
puted in terms of the “modified moments”, gO,n, n = 0, 1, 
2 3 . . . . 2N - 1. Explicit representations of c(, and fl, are 
derived by substituting (22) into ( 17) and ( 18), respectively, 
to arrive at 

and 

(24) 

For n = 0, we have PO = 0 (here, Do is arbitrary and is set 
equal to 0) and (16a) becomes 

00, 1 bo 
ao=-------- 

ao~o.0 a0 
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To compute o’n _ I,n and r~~,~, we begin with the calculation order “modified moments” B~,~,, , n = 0, 1, . . . . N - 1, since the 
of the 2N “modified moments,” odd order “modified moments” (T~,~,, + , , n = 0, 1, . . . . vanish 

identically. A more compact algorithm can now be derived 
h by taking advantage of the separation of the polynomial 

d O,,I = s k(x) 4x1 dx, n=O, 1, 2, . . . . 2N- 1. (25) 
<I subspaces, e,, and P+, into their respective subspaces of 

even and odd functions. 
The choice of the preconditioning polynomial subspace is From (9), we have the three-term recurrence for the even 
explicitly made here. ordered polynomials, QJx) = n,,(x) and &(x) s P2,(x), 

For m = 1, we obtain from (20) and (22) 

1 b, 
Qn+,(x,=(~~-~,)Q,(x)-~,Qn-,(x, (29) 

(T I,n=-p,n+l - a,+- ~0.n 
?I ( > a, and 

C” 
+-co.n-1, l<n<2N-2. 6’6) (30) 

For m = 2, . . . . Nandm<n<2N-l-m,wehavefrom(19) 
where 

1 
0 m,n =; CJm- l,n+ 1 -Pm- lcJm~2.n 

” 

This completes the algorithm. 
We note that the “modified moments” CJ~,~ can be and 

rewritten as 

(31) 

(32) 

(33) 

(34) 

(28) 

1 
c,=c2nc2n-1a2,+,la2,-,. 

This permits us to interpret the “modified moment,” gO,n, 
n = 0, 1, . . . . 2N - 1, as the expansion or “Fourier” coef- 
ficients associated with the projection of the ratio of 
the two weights, w(x)/$(x) onto the 2N-dimensional pre- 
conditioning orthogonal polynomial subspace, PG. The 
smoother the function w(x)/%(x), the more rapid the 
“modified moment” decays with n. This suggests a way to 
choose the polynomial subspace CP,,,. 

The “mixed moments” of the even parity subspaces are 

P n,m f ~2n,2m = 
s 

’ n,,(x) ~2M w(x) dx 
-1 

= I 1, Qn(x) &M w(x) dx. 

The “modified moments” algorithm is obtained from 
(23)-(27) by replacing 

(35) 

When both weights w(x) and G(x) are even functions of 
x on the interval ( - 1, 1 ), then both the subspaces Pw and Pi, 
have separable subspaces of even and odd functions. Under 
these circumstances, we can simplify the “modified 
moments” algorithm to effect a direct mapping between 
subspaces of equal parity. This means that there exists a 
permutation matrix Q such that 

a,, b,, c,, a,, 8,, and c’n,m 

respectively by their corresponding coefficients 

4, &, 4,, 4,,8,, and ,a,,,,,,. 

T’ =QTQT 
In the above calculation, we have make use of the relation 

is a 2 x 2 block diagonal matrix whose diagonal blocks are 
lower triangular. The diagonal block matrix represents the 
transformation between subspaces of equal parity. 

The “modified moments” method is reduced to com- 
puting the unknowns, fi,,, n = 1,2, . . . . N - 1, from the even 

Y&l - 
Y2(n ~ I ) 

B 2n. 

Having computed ti, and fl, from the modified moment 
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algorithm, we may use (31) and (32) to calculate /I*,, and conditioning subspace consisting of a set of Gegenbauer 
P Zn+ I if so desired. Here, we have polynomials, C&(x): 

and 

P *n+1=~in-Ij2n, n = 1, . ..) N- 1. 

111.2. An Application of the Modzyied Moment Method 

In this subsection, we apply the “modified moments” or 
the modified Chebyshev’s method to the generation of 
orthogonal polynomials on the finite interval (- 1, 1) with 
respect to the Hermite or Gaussian weight exp( -b2x2). 
There are three steps in the “modified moments” method: 
(1) choose a known preconditioning subspace of polyno- 
mials that is “close” to the desired orthogonal polynomials; 
(2) calculate their modified moments with respect to the 
Gaussian weight; and (3) compute the coefficients c(, and /I, 
of the three-term recurrence (1) using (23)-(24) and 
(26)-(27). 

We can choose the preconditioning subspace among the 
known classical orthogonal polynomials subspaces such as, 
Jacobi, ultraspherical or Gegenbauer, Chebyshev, and 
Legendre; otherwise the preconditioning orthogonal poly- 
nomials need to be generated. Under these circumstances, 
we are in no better position than we were in the beginning 
of the discussion. The above known orthogonal polynomial 
sub-spaces may not provide an adequate preconditioning 
for all b but they are, nevertheless, accessible and can be 
easily calculated. For expediency, we choose as the pre- 
conditioning polynomial sub-space the set of ultraspherical 
or Gegenbauer polynomials, Ci. The Gegenbauer polyno- 
mials are orthogonal to the weight (1 -x2)‘- I’* which 
depends on a parameter i. Furthermore, the Legendre poly- 
nomials, P,, and the Chebyshev polynomials, T,, and U,, 
are special cases of the Gegenbauer polynomials (Magnus, 
Oberhettinger, and Soni [ 131): 

CA”(X) = P,(x), 

C:(x) = i T,(x), 

CA(x) = U,(x). 

This permits us to observe the sensitivity of the precondi- 
tioning process by merely changing a parameter. 

We begin with the computation of the even order 
modified moments, P,,~, n = 0, 1, . . . . N - 1, associated with 
the projection of exp( - 6*x2)/( 1 -x2)‘-‘/* onto the pre- 

5 
1 

P0.n = exp( - b2x2) C;,(x) dx. (36) -1 

Let 

v;(b) = po,,(b, 21, n=O, 1, 2, . . . . N- 1, (37) 

where N denotes the highest order. An inhomogeneous, 
linear, three-term recurrence relation can be derived for 
vl;W, 

n+l 
2n+l+iV~+l (6) 

2n + 2. (2n+1)(1 -A) - 
b2 +(2n+A-1)(2n+E.+l) I 

x v;(b) - 
n-l+;l 
2n- l ++v9 

2n + I exp( - b2) 
=(2~~-1)C:,~l(l)n(2n+l) b2 2 (38) 

where Ci( 1) = (211),/m! (see Magnus, Oberhettinger, and 
Soni [ 131 for the definition of (A),). The derivation of (38) 
uses the differentiation formula 

and the recurrence relation 

(n+l)C+, = 2(n + A) xCY; 

-(n+21-1)Ci_,, n = 1, 2, . . . . 

for the Gegenbauer polynomials. 
It can be readily seen from (38) that when 1= i or on the 

set of Legendre polynomials that the inhomogeneous term 
vanishes identically. For n b 1 and n/(b/2)* > 1, then (38) 
reduces asymptotically to 

2n 
vi+,(b) - cb2,2j v;(b) - vi-,(b) 

=2(21--l) CL,Ubw(-b2) 
b* ’ (39) n 

The homogeneous solutions of (39) are the Bessel functions 

(-l)“In(b*P) and Ubz/2). 
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It is known from Abramowitz and Stegun [14] that Z,(z) 
decays with IZ for a fixed z and, therefore, is the subdominant 
solution of the homogeneous part of (38). Similarly, K,(z) 
grows with n for a fixed z and, therefore, is the dominant 
solution. We seek, however, the subdominant solution and, 
thus, this renders a forward marching method unacceptable 
in the presence of the dominant solution which can be 
excited by numerical perturbations. This suggests that we 
use Olver’s method [ 151 for computing the solution of (38) 
given the initial conditions v:(b) and v:(6). 

The essence of Olver’s method is to convert an initial 
value problem into a two point boundary value problem by 
disregarding the value of v:(b) and imposing, instead, a 
homogeneous boundary condition v;(b) = 0 for some 
arbitrary M. The value of M is determined by ensuring that 
the solution will be essentially unaffected by prolongating 
the imposition of the artificial homogeneous boundary con- 
dition by one more order. In effect, the decay rate of the sub- 
dominant solution is estimated. Rather than faithfully 
follow the details of Olver’s method, we develop, in what 
follows, a discrete invariant imbedding variant of Olver’s 
algorithm. It is akin to that proposed by Van der Cruyssen 
[ 161 who employs a LU factorization of the resulting 
tridiagonal coefficient matrix. 

The system of linear three-term recurrence relations, (38) 

C,V~+,(b)-b,vl;(b)+a,v~_,(b)=d,, 

n = 1 ) 2, . ..) M, 

with boundary conditions, 

vi(b) = A and v”,+,(b)=O, 

when written in matrix notation, has a tridiagonal coef- 
ficient matrix a. The vector of unknowns, vi(b), 
n = 1, 2, . ..) M, is ordered naturally. 

Applying the discrete invariant embedding algorithm to 
its solution, we obtain the decomposition 

v;(b) = R,v:.+,(b) + si, i = 1, 2, . ..) M; (40) 

Ri= Cl 
bi--a,R,-,’ 

i = 2, 3, . . . . M, with R, =6,/b,; (41) 

and 

S;=~(ai”i-l-di), i = 2, 3, . . . . M, 
I 

withS,= -d’iulA; 
1 

(42) 

Equations (41)-(42) constitute the forward sweep and (40) 
is the backward sweep. 

Next we turn to the question of choosing M: if M is 
chosen too large, wasteful computation results; and if M 
is too small, inaccuracy is obtained. Olver suggests the 
following method for determining the optimal value of M. 
The key is to observe the effect on the solution vi(b) for 
some L < M as a result of prolongating the imposition of the 
artificial homogeneous boundary condition by one more 
order, i.e., setting vh+Jb) = 0 instead of vh+ ,(b) = 0. This 
also yields an estimate of the rate of decay of the inverse of 
the coefficient matrix, A^. The result of the calculation is 
given by 

Iv;l(b, M+ 2) - v;(b, M+ 1)l 

z s M+I (43) 

Suppose we wish to compute vi(b) to D decimal places for 
given values of L and D; then setting 

S Mfl 

would ensure that vk(b, M f 1) and vi(b, M + 2) obtained 
by solving (40), in the backward direction, agree to D 
decimal places. 

The computational algorithm consists of fixing the values 
of D and L and of performing the forward sweep (41)-(42). 
During the performance of the forward sweep with n > L, 
additionally we compute 

n-1 
A,,=& n R,, n = L + 1, . . . . 

k=L 

If ) A,, I < 10-O/2, we set M = n and perform the backward 
sweep (40) with i=M- 1, M-2, .,., 1. 

IV. A DOMAIN DECOMPOSITION METHOD 

Domain decomposition methods are becoming 
increasingly popular for solving partial differential equa- 
tions. The reason lies in their adaptivity to problems with 
many and differing local structures. The essence of this class 
of methods is the patching of differing local sub-domain 
solutions to form a global solution. Another laudable 
feature of the domain decomposition methods is that in 
each sub-domain we may use an entirely different solution 
technique. This allows for increased efficiency and accuracy. 
In the present setting, we perform domain decomposition 
on the two-dimensional parameter space of b, a parameter 
associated with the Gaussian weight, and of n, the order of 
the orthogonal polynomial. These parameters appear 
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naturally in our formulation. Clearly, this method can be 
fruitfully applied to generating orthogonal polynomials 
with a positive weight on a finite interval. 

Heuristically, as we examine the weight function, 

An equivalent forward marching Stieltjes procedure can 
be established for calculating Z7,( l), y,, and p,, by using 
(44), the definition of @,, and (7) restricted to x = 1, i.e., 

n,+,(l)=n,(l)-B,n,~,(l). (45) 
exp{ - (bx)‘}, 

we see that for b < 1 and (xl< 1 the leading term of the 
Taylor expansion is 1 which corresponds to an uniform 
weight. Associated with the uniform weight is the set of 
Legendre polynomials P,(x). Thus for b < 1 and Vn, the 
orthogonal polynomials of interest behave like the Legendre 
polynomials. 

Since an orthogonal polynomial of order n has n zeroes 
within the interval of definition, a comparison of the oscilla- 
tion scale with that of the scale of variation of the Gaussian 
weight suggests, once again, that ZZ,(x) resembles the 
Legendre polynomials for n $ b2. 

For b 9 1, we rescale x so that the Gaussian weight 
becomes 

and the limits of integration go to + 6. Here, it is obvious 
that the polynomials n,(x) are asymptotically closed in 
behavior to that of the Hermite polynomials H,(y) or, 
equivalently, H,(bx). 

Based on a comparison of their scales with that of the 
weight, we may expect, for any finite b, the following 
behavior of the polynomials: (1) for 0 <n < N*, 
n,(x) - H,(bx), where N* is that highest possible order of 
Hermite polynomial whose oscillations are entirely confined 
within the basic interval (- 1, l), and (2) for n + b2, 
n,(x) - P,(x). In between, we have a transitional region. 

These arguments will be made more definite in what 
follows. Using the definition of the weighted norm (3) and 
the recurrence relation (7), we can rewrite the weighted 
norm yn as 

’ yn = s xZl7,p ,(x) n,(x) w(x) dx. 
--I 

Integrating the right-hand side by parts and using both the 
definition of the manic polynomial and the reflection sym- 
metry of w(x) about the origin, we derive the following two- 
term recurrence relation for yn, 

n 
Y”=,b2Yn-1- 

ev(-b2) n 
b2 n-,(1)17,(1), (44) 

where we have used nn( - 1) = ( - 1)” n,( 1). From (44), we 
see immediately that forward marching with increasing n is 
stable if n/2b2 < 1 and, conversely, backward recurrence 
with decreasing n is stable for n/2b2 > 1. 

The starting values are K , (1) = 0 and Z7,( 1) = 1. Unfor- 
tunately, this process, i.e., the Stieltjks procedure is numeri- 
cally unstable for all values of b and n. 

For problems with exponential weights or Freud weights, 
the “natural” orthonormal polynomials are more useful (see 
Nevai [17]). They are obtainable from the manic polyno- 
mials by a simple resealing. The three-term recurrence in 
this case becomes 

a,+lq,+l(x)=xq,(x)-a,q,-,(x). (46) 

Here, 

s 1 
q;(x) w(x) dx = 1, 

-1 

D,(x) = Jyn qJx), 

and 

a,=&. 
Moreover, 

q,(x) = 6,,x” + . . . ) 6,>0, 

and arr = 6,- ,/S,. 

Following Nevai, a pair of nonlinear recurrence is derived 
for a, and q,,( 1): 

r=2q,PI(l)q,(l)exp(-b2)+2b2a,, (47) 
” 

and 

2n+l =2qi;(l)exp(-b2)+2b2(a,2+ai+,). (48) 

In deriving (47)-(48) we have used q,,( - 1) = ( - 1)” q,J 1). 
Moreover, it should be noted that (47) is directly obtainable 
from (44) using the aforementioned scaling. When both (47) 
evaluated at n and at n + 1 are substituted into (48) we 
obtain 

(49) 

Therefore, the set of Eq. (47~(49) is not independent. We 
may choose any pair. 
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The utility of (47)-(49) for analysis is immediately and 
evident as we can simply readoff the results, as b --) 0, 

2b2 
2n+ 1=2qZ(l) (50) 

+1--- 
2n+l 

(n+1J2 a* n2 * 
(2n+1)(2n+3) ‘+l+%??’ ’ 1 (58) 

and It can be seen from (57)-(58) that 

n 
-=k-,(l)q,(l). 
a, 

(51) 1 n 
-<---Cl, 
2 2n-1 

They describe the set of orthonormal Legendre polyno- 
mials. Similarly, as b -+ co, we have 

1 (n+l)2 4 
?(2n+l)(2n+3)%’ 

1 n2 1 
Fpqy-j 

and 

J~q,+,(l)=bq,(l)-Jn/2q,~,(l). (53) 

The solution of (53) is the orthonormal Hermite polyno- 
mials evaluated at x = b, namely h,(b). Since an orthogonal 
polynomial of order n executes n oscillations in the interval 
of definition and 6, > 0 for all n, we must have q,,( 1) > 0 
(Nevai [IS] ). These same arguments, namely the oscilla- 
tions of the orthogonal polynomials and the positivity of 
q,J 1 ), can be used to find an upper bound on n called N* 
above, of which the orthogonal polynomials of interest 
deviate significantly from the set of Hermite polynomials. 

The following bounds on a, uniform for b and n can be 
established from the positivity of qn( 1) for Vn and from an 
analysis of (47)-(48): 

&a+&) 

and, therefore, for 

2b2 
-41 
2n+ 1 

This estimate together with the bounds established earlier 
proves the assertion that for b 4 1 and n B 1 such that 
2b2/(2n + 1) < 1 the orthogonal polynomials associated 
with the Gaussian weight is asymptotically similar to that of 
the Legendre polynomials. In fact, the orthonormal Rys 
polynomials, q,,(x), are slight perturbations of the Legendre 
polynomials, P,(x). This also suggests that the nonlinear 
Gauss-Seidel iterative method given by 

1 + Jl + 8b2n/(4n2 - 1) 1 ’ 
(54) n 

a’k’=2/{r~~l”ry) 

+ [I:~:~%$- “I” + 4(2b2/(2n + l))(n,‘(2n - l))}, 

To refine the estimates of (50))(52) we introduce the 
change of variables, 

(k) 2 (a ‘+‘I 

n 

an=,i/i2n-l)(2n+l)an 

and 
and 

q,,(l)=J@ZijC?exp 

The transformed equations are 

y(O) = 1 n 
(56) 

is convergent for 26*/(2n + 1) 4 1. We remark that for any 
fixed b the nonlinear Gauss-Seidel iterative scheme 
generates a perturbation solution to (57)-(58) with respect 
to the parameter 2b2/(2n + 1). The sequence of partial 

(57) sums is weakly dependent on l/n. Thus, the nonlinear 
Gauss-Seidel iterative solution is more rapidly convergent 
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with increasing n. This observation will be utilized later in 
our algorithm. 

Similar results can be obtained for b 9 1. Here, (52)-(53) 
suggest the introduction of d, and s,, 

we must have N* = L(b2 - 1)/2J, where L J denotes the 
integer value. To see this, we note that the usual Hermite 
polynomial H,(y), -cc < y < CC satisfies a second-order 
Sturm-Liouville equation of the form 

a _ 4 a2 
n b 

and 

(59) 

(60) 

where erf{x) is the error function. Substituting these 
changes of-variables into (46) and (47), we obtain 

and 

l=2&- ‘“j$“d”+d; 

where 

E = exp( - b’)/erf{ 6). 

(61) 

(62) 

In contrast to the previous situation, it is necessary to solve 
the three-term recurrence for s,. The starting values for the 
forward marching procedure are 

s-, =o and so = l/7?. (63) 

We note that the normalization appearing in (60) is intro- 
duced for convenience so that s0 is numerically near one. 

Another nonlinear Gauss-Seidel iterative method can be 
constructed for the solution of (61 k(63): 

with initial values 

S(k), = 0 
1 

- and si”=- 
nT1114 

and 

(64) 

(65) 

(66) 

Here, we set dip’ = 1. 
From a previous discussion, the solution si”’ is just h,(b), 

the orthonormal Hermite polynomials of order n evaluated 
at h. Since h..(bx) are oscillatorv in ( - 1. 1) for b2 > 2n + 1, 

u”(y) + (2n + 1 - u2) u(y) = 0, 

where 

4.~) = exp( -Y*/:!) AMY). 

Thus, H,(bx) is non-oscillatory in (- 1, 1) if b* > 2n + 1. 
Alternatively, (53) written in matrix form will have a 
tridiagonal, symmetric coeflicient matrix, called a Jacobi 
matrix. The coefficient matrix is diagonally dominant if 
h2 > 2n + 1. It follows that the initial value problem has a 
discrete maximum principle and, therefore, there is a domi- 
nant solution and a sub-domainant solution. The present 
discussion, together with the considerations following (44), 
suggests that forward marching is a viable solution techni- 
que for b > 1 and 1~ n 6 N*. This is the topic of discussion 
of the next section. 

V. THE ALGORITHM 

The algorithm is separated into three parts corresponding 
to changes in the local behaviors of the solution. We 
perform forward marching for 1 Q n < fi, where fi is to be 
determined, then a two-point boundary-value problem 
solver is used to continue for I?+ 1 d n d M, where M 
can be the order of the highest polynomial desired. The 
boundary condition at A4 + 1 is obtained by applying a non- 
linear Gauss-Jacobi iterative scheme to the intermediate 
equation to be discussed in what follows. The method of 
solution for the two-point boundary-value problem is akin 
to Olver’s method discussed in Section 111.2. 

The forward marching method makes use of (6 1) and (62) 
with initial conditions (63). They are rewritten here for 
convenience, 

d,,= 1-2(bE/n)s,-,[s,_,-J~d,~,s,,_,], 
(67) 

and 

Q% s =d [s,-r,./~d,_,s,-,I. (68) n n 

Using double precision arithmetic to evaluate expressions 
(67)-(68), we can extend the range of the computation 
beyond N* = L(b* - 1)/2J, an estimate obtained from per- 
turbation theory. The new limit, the switching point fi for a 
given value of b, is derived from computational experience. 
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This is done by comparing solutions of forward marching 
and of the domain decomposition with the switching point 
set at N*. The final switching points are chosen so that the 
recurrence coefficients have full single machine precision ( 14 
significant figures on Cray machines). 

To calculate the recurrence coefficients a, beyond the 
switching point fi, a two-point boundary-value problem 
must be formulated to circumvent numerical error growth 
of the forward marching scheme. An equation involving 
only the coefficients, a, can be derived by squaring (47) and 
by replacing q:( 1) and qip r( 1) thus appear with (48). The 
final result is 

n2 - 4nb2e, + 4b4ei 

=e,[2n+l-2b2(e,+e,+,) 

x [2n - 1 - 2b*(e, + e,- ,)I, (69) 

where 

e,=ai. 

Further reduction can be made by introducing the following 
change of variable, 

e,=i(l +$JFn) (70) 

to yield 

where 

(72) 

F,, = 2n(2n - b2) - 1, 

and G,=2n-b’+l. (73) 

We note that the leading term, a is suggested by Nevai’s 
asymptotic analysis [ 171 and that F,, is singular for 

Therefore, this formulation is valid for n > fl. Moreover, 
when b = 0 we have 

l//,-l and F,=4n2- 1, 

leading to e, = n2/(4n2 - 1 ), which are the recurrence coef- 
ficients for Legendre polynomials. This suggests that with 
the present setting, (70)-(73), the calculated solution is 
uniform in b. Therefore, it is not necessary for computa- 
tional purposes to explicitly identify the Legendre polyno- 
mials as discussed previously. 

To simplify the notation, let 

y= (ti/s+1, tifi+z, ...3 $M)‘> 

s= (Sfiscl, sfi+z, . . . . s,)T, 

s=(s~+l,s~+2,...,s~)~ 

be p = M - fi component vectors and A, a p x p, tridiagonal 
matrix 

. . 
b2Gn 

2Fn-I 
1 b2Gn- 1 

2Fn+1 
. . . . . . 

. . . . . . 
. . . . . 

then (71) may be rewritten in matrix form as 

O=S(Y)=AY-S(Y). 

9 (74) 

We remark that (69)-(70) evaluated at n = fi and M involve 
respectively the solutions at both endpoints, +A and $,,,+ , 
Thus, (71) is a two-point boundary-value problem. These 
values must be provided for. The completion of the forward 
marching scheme (67)(68) yields one boundary value, $a. 
For the other boundary value $M + r, it will be computed by 
using an iterative procedure different from that employed in 
solving (7 1). As a result, there are three distinct subdomains 
in which we employed different solution techniques and 
different formulations of the fundamental equations. This 
represents the differing inherent local behaviors of the Rys 
polynomial. A domain decomposition method can accom- 
modate conveniently and naturally these changes in the 
formulation of the computational problem as well in its 
solution technique. 

To continue with the algorithm development, we note 
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that the off-diagonal elements of the tridiagonal matrix A P x P, triangular matrix obtained from a regular splitting 
have the bounds ofA; 

b2G, b2GA+2 1 

=‘n- I <2F,,,? 

b2G --I <bZ(G-2)< b2Gn n 
2Fn+,, 2Fn-I 2Fn-, 

for 

(75) 

It follows that A is irreducibly diagonally dominant with 
positive diagonal and negative off-diagonal entries; hence, 
its inverse is non-negative and non-singular. In fact, A is a 
M-matrix. The spectral radius of I- A is less than one, i.e., 
p(Z-A)< 1 [19]. 

Moreover, if the inequality (75) holds, then we have 

w, - S(Y)1 < K Ix - A, 
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VI. COMPUTATIONAL RESULTS 
AND DISCUSSION 

Both the “modified moments” method of Section III.2 
and the domain decomposition method have been program- 
med in FORTRAN and executed on a CRAY computer. 
The domain decomposition results are accurate to full 
machine precision of 14 significant figures. To acertain the 
accuracy of the solution by the domain decomposition 
method, we compare them with the solutions obtained by 
the convergent Gauss-Seidel iterative methods in their 
respective regions when possible. 

The switching point, 3 which separates the Stieltjes 
procedure from the two-point boundary-value method is 

I 

7 + nint(7.8 x (b - 1.5)) for lS<b$3.0 
19 + nint(9.6 x (b - 3.0)) for 3.0 < b < 8.0 

#= 67+nint{16Sx(b-8.0)) for 8.0 < b Q 10.0 
lOO+nint{12.2x(b-10.0)) for lO.O<b<15.0 
nint(b2/2 + 12.5 &} for 15.0 < b, 

where nint { z)- denotes nearest integer value of z. These 
values are obtained by comparing the solutions of the 
domain decomposition method with that of the Stieltjes 
procedure so that the a,~ has full machine precision. It is 
worth noting that the switching point so obtained is well 
into the convergent regions of both the modified Newton’s 
method (77) and the nonlinear Gauss-Jacobi iterative 
method (78) for solving (71). 

TABLE I 

Recurrence Coefficients 

n b= 1.0 4.0 7.0 

r 0.50369048214522 0.17677665040159 0.10101525445522 
2 0.52487719608986 0.24999901588434 0.14285714285714 
3 0.51174521082925 0.30617456640840 0.17496355305594 
‘I 0.50559349008529 0.35346277600225 0.20203050891044 
5 0.50321922418396 0.39478178904026 0.22587697572631 
6 0.50211240053702 0.43093140632470 0.24743582965269 
7 0.50149940388810 0.46110486434426 0.26726124191236 
8 0.50112121054601 0.48355962976400 0.28571428571354 
9 0.50057064887162 0.49727394650698 0.30304576335840 
10 0.50069585696553 0.50339106385693 0.31943828243850 
15 0.50029775338437 0.50146513986250 0.39122995082961 
20 0.50016449692731 0.50044490737323 0.45151534535415 
25 0.50010417182890 0.50021805570984 0.49478835770008 
30 0.50007184023604 0.50012962760449 0.50204022152527 
35 0.50005252113442 0.50008591452018 0.50064374930540 
40 0.50004006396268 4l.50006111386882 0.50026955749509 
45 0.50003156546726 0.50004569262037 0.50015082117038 
50 0.50002551002708 0.50003545188179 0.50009680514051 
60 D.50001765524425 0.50002312143805 0.50004972445119 
70 0.50001293987793 0.50001626235739 0.50003022787626 
80 3.50000988918701 0.50001205792713 0.50002030492757 
90 3.50000780271018 0.50000929592895 0.50001457428051 
100 D.50000631310588 0.50000738472064 0.50001096760512 

10.0 

0.07071067811865 
0.10000000000000 
0.12247448713916 
0.14142135623731 
0.15811388300842 
0.17320508075689 
0.18708286933870 
0.20000000000000 

0.21213203435596 
0.22360679774998 
0.27386127875258 
0.31622776601684 
0.35355339059327 
0.38729833460953 
0.41833000170616 
0.44721022713594 
0.47407710634009 
0.49506996605430 
0.50075227119063 
0.50016149330894 
0.50007006104567 
0.50003920668490 
0.50002504677066 

I.'? 

1.0 ‘\ 

0.H 

. 

0.0 : ~~~ ~- 
0.0 20.0 10.0 fiO.0 RO.0 1010.0 

II 

FIG. 1. b= 1.0. 

The computed recurrence coeflicients for b = 1, 4, 7, 10 
are shown in Table I. For this set of values of b, we have also 
plotted respectively in Figs. 14 the ratios of an/a: and 
aJa,L~ where u,” are the recurrence coefficients associated 
with the Hermite polynomials and u: are the coefficients 
associated with the Legendre polynomials. These plots 
allow us to see explicitly the identity of the subspaces and 
the length of the transition zone. Indeed, the separation of 
the subspaces is clearly delinated as is the progressive 
reproportioning of the subspaces with increasing b. This 

I.‘.! 

1.0 /‘““‘~~ 
,. 

. 
. 

0.11 ‘. 
. 

O.ti 

0.2 i 

0.0 I 
0.0 ‘20.0 ~10.0 HO.0 RO.0 100.0 

I1 

FIG. 2. b=4.0. 
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0.0 20.0 40.0 60.0 80.0 100.0 

n 

FIG. 3. b= 7.0. 

tends to suggest that the “modified moments” method using 
just one preconditioning subspace, say the Legendre poly- 
nomials, will eventually fail since the Rys polynomials do 
change character with b and n as predicted by our analysis. 

A series of computations is made with the “modified 
moments” method developed in Section III.2 using the 
Gegenbauer polynomials as the preconditioner. The objec- 
tive of these calculations is to assess the effectiveness of the 
various preconditioning polynomial subspaces. Recalling 
that the Legendre polynomials and the Chebyshev polyno- 
mials of the first and second kind are special cases of the 

1.2 -1 

0.6 

0.4 

0.2 

0.0 

x 
xx 
x 
x 
x 

Legend 
l = Hermite 
x = Legendre 

I.0 2b.o 40.0 60.0 60.0 100.0 

n 
FIG. 4. 6= 10.0. 

“I . . . 

FIG. 5. Chebyshev I. 

Gegenbauer polynomials and that the associated weights 
depend on a parameter, we can examine a host of possible 
preconditioners by merely changing the parameter, 1. It is 
found that the “modified moments” method using single 
precision arithmetic produces full machine accuracy for 
b < 3. Then, the calculations begin to lose significance. 
Nine-place accuracy is obtained for b = 4. Thereafter loss of 
significance increases. Figures 5-7 document respectively 
the degradation of the numerical solution as b increases for 
the three preconditioning classical orthogonal polynomials; 
Chebyshev polynomials of the first kind, the Legendre poly- 
nomials, and the Chebyshev polynomials of the second 
kind. Since this paper is concerned mainly with the develop- 
ment of an effective method for generating orthogonal poly- 
nomials given the Gaussian weight there is no extra effort 
put into the computation of the “modified moments,” v:, 
nor put into investigating further the cause of the degrada- 
tion of the solution. 

To ensure that the preconditioning polynomial space is 
“close” to the desired orthogonal polynomials, we propose 
a continuation method in which the previous solution at 
some b = b, , i.e., qn(x, 6,) is used to precondition the com- 
putation at some other b # 6,. The explicit dependence of 
the orthogonal polynomials on the parameter b is displayed 
for clarity of exposition. The idea underlying the continua- 
tion method is to derive a system of differential equations 
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FIG. 6. Legendre 

FIG. 7. Chebyshev II. 

for the “modified moments” in which the solution at bi is the 
preconditioner. In this case, the “modified moments” are 

v,(b, b,) = i“ e/“*q,(X, 6,) dx 
-1 

s 

1 
= e-‘b2-+-2qn(X, b,) e-b:.y2 dx, 

-1 

which we can rewrite with the introduction of c = b2 - 6: to 
yield 

v,(c, b,) = j;, PX2q,(x, b,) epbfx2 dx. (77) 

Here, v,(c, b,) is the “Fourier” coefficient of c-“~’ projected 
onto the orthogonal polynomial subspace of {q,,(x, 6,)). 
Note that only the even ordered “modified moments” are 
nonvanishing. 

Since the integral is well defined, we may differentiate 
inside the integral with respect to c to obtain 

v;,(c) = - j’ eccX2x2q2,(x, b,) e-‘yx2 dx. (78) 
-1 

Here, we have suppressed the dependence of b I . Using the 
recurrence relation for the even ordered polynomials, we 
derive the following system of first-order differential equa- 
tions for vzm(c). Let 0, = v2,,,, then 

Ok= -a 2m+la2(m+l) m+l 8 

-Kil+, +a:,)8,-a2,a2,-,e,-,, 

m = 1, 2, . . . . (79) 

In matrix form, (79) is a first-order linear differential equa- 
tion for the vector 0 whose components are the { 0,} 
ordered in increasing n, 

O’= -B(b,)O+F(b,). (80) 

B(b,) is that tridiagonal Jacobi matrix associated with the 
computation of the Gaussian quadrature rule for b = 6,. 
In fact, its eigenvalues are the abscissas of the Gaussian 
quadrature rule. The solution of (80), 

O(c) = ewBcO(0) + BP’F, 

can be obtained from a spectral decomposition of B. There- 
fore, its computation is just a by-product of the Gaussian 
quadrature calculations once the recurrence coefficients 
a,(b,) are obtained. 

In conclusion, a domain decomposition method has been 
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developed for generating orthogonal polynomials given a 
Gaussian weight on ( - 1, 1). The formulation of the com- 
putational scheme is directed at securing just the recurrence 
coefftcients and the computational scheme takes advantage 
of the underlying asymptotic structure of the Rys polyno- 
mials as a function of b. and IZ. Thus, the solution technique 
is effective in the sense that it makes maximal use of the 
analytic properties of the solution and it can produce results 
of any desirable accuracy. 
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